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Large Scale Machine Learning Problems

Convex optimization problem

T
minimize ) ((w, z)
=

where w is a vector of parameters and z; is a data record.
A data record z; could be:

e “Hi, My name is Nastasjushka :)” is a spam email.

e Coca-Cola ad on www.nytimes.com was not clicked on by
David at 3:14:15pm

Loss function ¢(w, z) is convex in w.



Methods of Solution

Data is huge
e T is between 10° and 10%°

e w has dimension between 10° and 10°

First-order methods

W1 = Wy — NVl (wy, z¢)

e How to tune step size 77?
e What is the test loss of the learned model?



Overview

Online Learning 101:
@ Online Convex Optimization (OCO)
@® Solving OCO implies low test error
® Online Linear Optimization (OLO)
® OLO solves OCO

Scale-Free algorithms for OLO:
@ Follow The Regularized Leader (FTRL)
® Strongly convex regularizers
©® Scale-free variants of FTRL
O Upper/Lower Bounds on Regret
® Open Problem



OL 101: Online Convex Optimization (OCO)

Fort=1,2,...
e predict w; € K
e receive convex loss function ¢; : K — R

o suffer loss ¢;(wy)

Competitive analysis w.r.t. static strategy u € K:

T
Regret;(u) = Y li(w;) —

t=1 t=1

1=

Et(u)

Goal: Design algorithms with sublinear Regret.



OL 101: Solving OCO implies low test error

We really want to solve a stochastic optimization problem

minimize Risk(w) where Risk(w) = E [¢(w,z)]
wekK z~D

and D is unknown. We have only i.i.d. sample z1, 25, ..., zT.

Run an OCO algorithm on 4;(-) = ¢(-,z;).
Takew = % Zthl W

It can be proved that

E[Risk(w)] — Risk(w*) < — E[Regret;(w")]

~| =

High probability result:
Risk(w) — Risk(w™*) < % Regret, (w*) + O( y/log(1/6)/T)

No regularization needed!



OL 101: Online Linear Optimization (OLO)

Fort=1,2,...
e predict w; € K
e receive loss vector g; € R?

o suffer loss (gt, wy)

How well an algorithm is doing compared to u:

T T
Regret; (1) = Y (g1, wi) — Y (gru
1

t= t=1

Goal: Design algorithms with sublinear Regret.



OL 101: OLO solves OCO

e Feed OLO algorithm with g = V/;(w;)
e It can be proved that

Regret(©0) (1) < Regret(©L0) (1)
Proof:

Regret(00) (1) = i@t(wt) — 4 (u)

H
Il
—_

<V€t(wt) wy — M>
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..F
Il
—_

(gt,wy) = Regret(OLo)(u)

Il
1=

N
Il
_

Linear functions are the hardest convex functions to minimize!



Overview

Online Learning 101:
@ Online Convex Optimization (OCO) v/
@® Solving OCO implies low test error v/
® Online Linear Optimization (OLO) v/
O OLO solves OCO v

Scale-Free algorithms for OLO:
@ Follow The Regularized Leader (FTRL)
® Strongly convex regularizers
©® Scale-free variants of FTRL
O Upper/Lower Bounds on Regret
® Open Problem



Follow The Regularized Leader (FTRL)

Letbe R : K — R be a convex and 77 > 0. FTRL chooses

=1
wy = argmin (;R(w) + ) (g w))

wekK s=1

For example with R(w) = 1||w]|3
=1
wy = T (—11 ng)
s=1

where ITg(u) is the projection of u to K.




FTRL = Gradient Descent with Lazy Projections

=1
wy = Tk (—17 ng) Xt = Xp—1 — N&t-1
s=1

wy = Tg(x4-1)



Strongly Convex Regularizers
A convex function R : K — R is A-strongly convex w.r.t. || - || iff

A
vx,y €K R(y) 2 R(x) + (VR(x),y —x) + 5 [lx = y|I?
Equivalently, for all t € [0,1] and all x,y € K,

R(tx+ (1 —t)y) = tR(x) + (1 - )R(y) — %t(l —Hllx—yl?

R(z)

For example,
o R(w) = }|lwl|3is 1-strongly convex w.r.t. || - |
e R(w) = Y%, w;Inw; is 1-strongly convex w.r.t. || - ||; on

d
K:{we]Rd : wZO,Zwizl}

i=1



Regret Bound for FTRL

Theorem
If R(w) > 0 and 1-strongly convex with respect to || - ||,

1 T
Regrety(u) < R(u) +71 ) gl
t=1
where || - ||« is the dual norm of || - ||.

Optimal choice of # when K is bounded

R T
g = | ek R Regret, (1) <2 | sup R() Y g2
thl Hng* uek =1

How do you choose 7 in advance?



Scale-Free Property

Multiply loss vectors by ¢ > 0:

glng/ e CgllchI' ..

An OLO algorithm is scale-free if wy, w», ... remains the same.

For a scale-free algorithm

Regret; (1) — cRegret;(u)

T T
Yo lgell2 = ey | X llgili?
t=1 t=1

and



Scale-Free FTRL
For FTRL

=1
w; = argmin ! —R(w) + ) (g5, w)
wek Mt s=1

to be scale-free 1/7; needs to be 1-homogeneous function of

81,82, -, 8t-1-
Thatis, (g1,82,---,8-1) — (c§1,¢2, - ..,Cgt—1) causes
1/ne — c/n

weK 5=

. -1
= argmin <mR(w) Z(cgs, ))

weK s=1

H

—1
wi = argmin <; E s, W >



Bad Scale-Free Choices for 1;

For example,

7 1
t=
118+
7 — 1
" gl 4202l
1
M= —"F—
VI g6+
1
= (gt—1,Wr—1) +47(gt—2, Wi—2)

makes 1/#1; 1-homogeneous in g1,82,...,8t-1-

Unfortunately, regret will be Q)(T) for all of these.



Two Good Scale-Free Choices of #;

J———-___  (SOLOFTRL)

Y1 llgsli?
1

Y1 3 Dre (—ns Ei18i s Lot gj)

1t (ADAFTRL)

Dg- (-, -) is the Bregman divergence of Fenchel conjugate of R.



Regret of Scale-Free FTRL

Theorem

Suppose R : K — R is non-negative and A-strongly convex w.r.t.
|| - ||. K had diameter D w.r.t. to || - ||.

SOLO FTRL:

Regret; (1) < (R(1) + 227 zugtnz

ﬂ

—1
35min{ D, .
+ mm{ 1 }t_rlr}gjfjl\gtll

ADAFTRL:

Regret, (1) < 2max {D,l/ \/X} (1+R(u Z 1gel1%



Optimization of A for Bounded K

e Choose R(w) = Af(w) where f is non-negative 1-strongly
convex.
e Use D < /8sup, . f(u)

e Optimize A
For both algorithms, with optimal choices of A,

uek

Regret, (1) < 13.3 J sup f(u Z [FlF



Bits of the Proof: Homogeneous Inequalities

For non-negative numbers C,ay,ay, ..., ar,

T 2 T
a
) min L, Ca; p <35,|) a?+35C max_a
t=1 i;% a2 t=1 t=12,..T

implies that




OLO Lower Bound

Theorem
For any ay,ay, . ..,ar and any OLO algorithm there exists
£1,£3,..., 0t and u € K such that

o |01|ls = ay, ||b2]|s = aa, ..., |1« = ar

o Regretr(u) > % 1 [1e]12

Proof.
e Choose ¢ € R? and x,y € Ksuch that

lx =yl =D [l =1«

argmin(/,x) =x argmax({,y) =y
xeK xeK

e Set {; = +a;¢ where signs are i.i.d.
random



Open Problem

Our regret bound is

Jsupf Z Ig:[12

uek

where f : K — R is 1-strongly convex w.r.t. || - ||.

Given a convex set K and a norm || - ||, construct
non-negative 1-strongly convex f : K — R that minimizes

supf(u) .

uek

Trivial lower bound: If diameter of K is D, then
sup,,xf () > D?/8.



Questions?

Paper: http://arxiv.org/abs/1502.05744
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