AdaGrad has regret larger than T
(and how to fix it)

Francesco Orabona Dávid Pál

Yahoo Research, New York

June 26, 2016

COLT 2016
Online Linear Optimization

Given convex set $K \subseteq \mathbb{R}^N$

For $t = 1, 2, \ldots$
 - predict $w_t \in K$
 - receive loss vector $\ell_t \in \mathbb{R}^N$
 - suffer loss $\langle \ell_t, w_t \rangle$

$$\text{Regret}_T(u) = \sum_{t=1}^{T} \langle \ell_t, w_t \rangle - \sum_{t=1}^{T} \langle \ell_t, u \rangle$$

We consider the \textbf{unbounded} domain $K = \mathbb{R}^N$
Gradient Descent

Gradient descent

\[w_1 = 0 \]
\[w_{t+1} = w_t - \eta_t \ell_t \]

Popular step sizes:

1. \(\eta_t = \frac{1}{\sqrt{t}} \) (Zinkevich)
2. \(\eta_t = \frac{1}{\sqrt{\sum_{s=1}^{t} \|\ell_s\|_2^2}} \) (AdaGrad)

- Vowpal Wabbit, Spark MLlib, deep learning packages
- Both step sizes have regret \(\Omega(T^{3/2}) \) — this not a typo!
Regret is larger than T

One-dimensional loss vectors:

$$
-1, -1, \ldots, -1, +1, +1, \ldots, +1
\begin{array}{c}
\text{\textcolor{red}{T/2}} \\
\text{\textcolor{green}{T/2}} \\
\end{array}
$$

Zinkevich = AdaGrad: $\eta_t = \frac{1}{\sqrt{\sum_{s=1}^{t} \|\ell_s\|_2^2}} = \frac{1}{\sqrt{t}}$

Regret $T(0) = \sum_{t=1}^{T} w_t \ell_t = - \sum_{t=1}^{T/2} w_t + \sum_{t=T/2+1}^{T} w_t \geq \frac{T^{3/2}}{20}$
FTRL to the Rescue

Gradient Descent:

\[w_t = - \sum_{s=1}^{t-1} \eta_s \ell_s \]

FTRL (a.k.a. Dual Averaging):

\[w_t = - \eta_t \sum_{s=1}^{t-1} \ell_s \]

Theorem (Orabona-P.'15)

FTRL with \(\eta_t = \frac{1}{\sqrt{\sum_{s=1}^{t-1} \|\ell_s\|_2^2}} \) satisfies for all \(u \in \mathbb{R}^N \),

\[\text{Regret}_T(u) \leq \left(\frac{\|u\|_2^2}{2} + 2.75 \right) \sqrt{\sum_{t=1}^{T} \|\ell_t\|_2^2} + 3.5 \sqrt{T} \max_{t \leq T} \|\ell_t\|_2 \]