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1 Introduction

Vizing’s theorem tells us that cubic graphs are edge-colorable by either 3
or 4 colors. Graphs for which 4 colors are needed are called Snarks. (Btw.
it is an NP-complete problem to determine if given cubic graph is 3-edge-
colorable.) A coloring by 4 colors is easy to establish. Therefore it was
proposed by Archdeacon to study colorings such that some prescribed set of
triples of colors of the edges at a vertex are allowed. A very natural structure
of triples is a Steiner triple system.

2 Steiner triple systems and colorings

Definition 1. Steiner triple system S is a pair S = (P, T ), where P is finite
set of points containing at least three elements and T is family of 3-element-
subsets of P (called triples) such that each 2-element-subset of P is contained
in exactly one triple.

The number of points of a Steiner triple system is called its order. In-
stead of writing the longish ’Steiner triple system’ we shall write only Steiner
system or even only system. We hope there should arise no confusion from
this. The following easy proposition holds.

Proposition 2. Let S be a Steiner triple system of order n. Then

n ≡ 1 or 3 (mod 6).

Proof. Choose an arbitrary fixed point v. There are n− 1 pairs of the form
{u, v}, u 6= v. Any triple containing v covers two of these pairs. Therefore
n is odd. Further, each triple covers exactly three pairs of points. There
are exactly

(
n
2

)
= n(n− 1)/2 pairs of points to be covered. While each pair

is covered exactly once by the triples, we have 3|n(n − 1)/2. The only odd
solutions modulo 6 are 1 and 3.

The converse is also true. That is, if n ≥ 3 and n mod 6 is either 1 or
3, then there exists a (cyclic) Steiner triple system of order n. Hence, there
exist systems of orders 3, 7, 9, 13, 15, 19, 21, . . . and systems of other orders
do not.

The simplest Steiner system is the trivial Steiner system of order 3 con-
sisting of only one triple. We will denote it by the letter T . The smallest
nontrivial Steiner triple system is the so called Fano plane depicted on Figure
1. It is the only system of order 7. As its point set we take nonzero vectors
over the field Z2 of length three Z2 × Z2 × Z2 − {(0, 0, 0)}. As the set of
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Figure 1: The Fano plane. Straight lines and the circle form the triples.

triples we take all triples {a, b, c} where a+ b+ c = (0, 0, 0). We will denote
the Fano plane by F .

To create larger Steiner systems two generic constructions can be used.

Theorem 3 (2n+1-construction). For each Steiner triple system of order
n there exists a Steiner triple system of order 2n+ 1.

Proof. Let S = (P, T ) be any Steiner system of order n. Let us take an
isomorphic copy of the system S, which we will denote S ′ = (P ′, T ′) together
with the isomorphism v 7→ v′ for every point v ∈ P . Further let x be a new
(2n+ 1)-th point. Then S ′′ = (P ′′, T ′′), P ′′ = P ∪ P ′ ∪ {x} and

T ′′ = T ∪ {{u, v′, w′} | {u, v, w} ∈ T} ∪ {{v, v′, x} | v ∈ P}

is Steiner triple system of order 2n+ 1.

Starting with the trivial Steiner triple system and successively using 2n+
1-construction we form the class of the so called projective Steiner systems.
They can be easily algebraically described as the projective spaces over the
field Z2. After n − 1 contructions we get a system isomorphic to the n
dimensional projective space over the field Z2 denoted by PG(n, 2). It has
order 2n+1 − 1 and the point set is

Z2 × Z2 × · · · × Z2︸ ︷︷ ︸
n+1 times

−{(0, 0, . . . , 0)}.
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The set of triples is formed by all the triples {a, b, c} where a + b + c =
(0, 0, . . . , 0). For example, the trivial Steiner system is a one-dimensional
projective space and the Fano plane is a two-dimensional projective space,
i.e. a projective plane.

Theorem 4 (Direct product). Let S = (PS , TS) and R = (PR, TR) be
two Steiner triple systems of order m and n respectively. Then there exists
a Steiner triple system of order mn.

Proof. As the point set of the system we take PS×PR. The triples are formed
as follows

{{(s1, r), (s2, r), (s3, r)} | {s1, s2, s3} ∈ TS , r ∈ PR} ∪
{{(s, r1), (s, r2), (s, r3)} | s ∈ PS , {r1, r2, r3} ∈ TR} ∪
{{(s1, r1), (s2, r2), (s3, r3)} | {s1, s2, s3} ∈ TS , {r1, r2, r3} ∈ TR}.

We will denote S×R the resulting Steiner triple system from the preced-
ing theorem. Of course, this construction can be easily generalized to more
than two systems S1,S2, . . . ,Sk forming more complex system S1×S2×· · ·×
Sk.

As with the 2n+1-construction, direct product of trivial Steiner systems
gives us the family of the affine Steiner systems. Again, these can be easily
algebraically described as the affine spaces over the field Z3. The Steiner
system

T × T × · · · × T︸ ︷︷ ︸
n−times

is isomorphic to the affine space AG(n, 3). Its points set is

Z3 × Z3 × · · · × Z3︸ ︷︷ ︸
n−times

and the triples are of the form {a, b, c}, a+ b+ c = 0, a 6= b, b 6= c, a 6= c.
In both the projective and affine Steiner systems the triples are actually

the geometrical lines of the underlying spaces. From this reason the abbre-
viations AG and PG—meaning affine and projective geometry—are used in
both geometrical and combinatorial design literature.

Definition 5. Let G = (V,E) be cubic graph and S = (P, T ) a Steiner
triple system. A Steiner coloring is a map φ : E → P , such that the colors
φ(e1), φ(e2), φ(e3) of the three edges e1, e2, e3 meeting at any vertex form a
triple of S.
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Figure 2: Affine plane AG(2, 3). Straight lines and curves form the triples.

Definition 6. Let G = (V,E) be cubic graph and S = (P, T ) a Steiner triple
system. A weak Steiner coloring is a map φ : E → P , such that the colors
φ(e1), φ(e2), φ(e3) of the three edges e1, e2, e3 meeting at any vertex either
form a triple of S or φ(e1) = φ(e2) = φ(e3).

A (weak) coloring by a Steiner triple system S will be called a (weak)
S-coloring, for short. There is no difference between a 3-edge-coloring and a
T -coloring, and we will use these two terms interchangeably.

A weak Steiner coloring divides the set of vertices of a graph into two
categories: The set of vertices at which the colors of the three incident edges
form a triple of the Steiner system, and the set of vertices at which all the
three incident edges have the same color. We will call the former vertices
regular and the latter vertices singular. (Holroyd and Škoviera [3] used the
term ’weak’.)

Two weak colorings of a graph by two Steiner triple systems can be com-
bined to form a weak coloring by their direct product, as the following the-
orem shows.

Theorem 7. Let G be a cubic graph, let S,R be two Steiner triple systems,
and finally let φ be a weak S-coloring and ψ be a weak R-coloring of G.
Then there exists a S × R-coloring such the set of singular vertices is the
intersection of the sets of singular vertices of φ and ψ.

Proof. Let us construct the coloring χ of the graph G by the system S ×R
as the cartesian product of the colorings φ and ψ, that is

χ(e) = (φ(e), ψ(e)), e ∈ E(G).

Look at three edges e1, e2, e3 meeting at any vertex v ∈ G. If v is regular
in one or both of the colorings φ, ψ i.e. φ(e1), φ(e2), φ(e3) is triple of S or

4



u yx v u v

Figure 3: Reduction of a double edge.

ψ(e1), ψ(e2), ψ(e3) is triple of R or both are, then χ(e1) = (φ(e1), ψ(e1)),
χ(e2) = (φ(e2), ψ(e2)), χ(e3) = (φ(e3), ψ(e3)) is triple of S × R and v is
regular in the coloring χ.

If v is singular in both φ and ψ, that is φ(e1) = φ(e2) = φ(e3) and ψ(e1) =
ψ(e2) = ψ(e3), then χ(e1) = (φ(e1), ψ(e1)) = χ(e2) = (φ(e2), ψ(e2)) =
χ(e3) = (φ(e3), ψ(e3)) and v is singular in χ.

In any case, χ is a correct weak Steiner coloring.

Most important will be the case when the sets of singular vertices of the
two colorings are disjoint. Then the resulting coloring will be a (non-weak)
Steiner coloring.

3 Basics

In this chapter we prove some facts about Steiner colorings of cubic graphs.
We allow graphs to have parallel edges and self-loops. However, note that a
graph with a self-loop is not colorable by any Steiner system. Parallel edges
can be easily avoided by using the following two reductions

Proposition 8 (Reduction of a triple edge). Let S be a Steiner system.
Let G be cubic graph with a triple edge between vertices x and y. Then
G′ = G− {x, y} is S-colorable if and only if G is.

Proof. Clearly, any S-coloring of G is also a S-coloring of G′. Conversely,
any S-coloring of G′ can be extended to a coloring of G′ – it suffices to color
the triple edge xy by any triple of S.

Proposition 9 (Reduction of a double edge). Let S be a Steiner system.
Let G be cubic graph with a double edge between the vertices x and y. Let
G′ be cubic graph obtained from G by contracting x, y and suppressing the
2-valent vertex. Then G′ is S-colorable if and only if G is.

Proof. Let be u, v be neighbouring vertices of the double edge xy; ux, yv ∈
E(G). (See Figure 3.) Let us have any S-coloring of G′ and let c1 be the
color of edge uv of G′. This coloring can be extended to a coloring of G:
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Color the double edge xy by any colors c2, c3 such that c1, c2, c3 form a triple
of S and assign the color c1 to both the edges ux and yv.

Conversely, let us have a S-coloring of G. Necessarily the edges ux and
vy have the same color c. Therefore after reduction of the double edge we
can assign to the edge uv the color c and leave the colors of the other edges
untouched.

If a cubic graph G has parallel edges, we can always reduce it to a graph
G′ without parallel edges by a series of these two reductions. G′ is colorable
by some Steiner system S if and only if G is. However a self-loop may appear
in G′ and therefore nor G′ nor G is not colorable by any Steiner system. To
explain when self-loops appears, we must define the class of series-parallel
graphs.

Definition 10. A series-parallel graph is recursively defined as follows:

• The disjoint union of any number of the graphs K1 and K2 is series-
parallel.

• A graph obtained from a series-parallel graph by subdivision of an edge
is series-parallel.

• A graph obtained from a series-parallel graph by creating a parallel edge
is series-parallel.

It is clear that if cubic graph can be reduced to an empty graph by reduc-
ing double and triple edges, it must be series-parallel. It also easy to see that
this can be taken as a characterization of a cubic series-parallel graph. Since
both the reductions of double and triple edges preserve bipartiteness and
bridgelessness, cubic series-parallel graphs are both bridgeless and bipartite.

Definition 11. Let G be a cubic graph. An end vertex v of a bridge is
called a series-parallel end, if after removing the bridge and supressing v the
component containing v becomes series-parallel.

The block with a series-parallel end can not contain any other cut vertex
other than v, because cubic series-parallel graphs are bridgeless. In other
words, a series-parallel end lies in a leaf of the block graph.

The block with a series-parallel end reduces to a self-loop and hence the
series-parallel ends are an obstruction to Steiner colorings at all. All other
cubic graphs can be colored by at a least one Steiner system [2]. In particular,
bridgeless cubic graphs can not have a series-parallel end and are thus Steiner
colorable.

The following fundamental theorem can be found in [3].
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Theorem 12. Every bridgeless cubic graph admits S-coloring, for any non-
trivial Steiner system S.

Recall that if for any two points x, y of a Steiner system there exists an
automorphism mapping x to y, then the system is called point-transitive.
We can deduce easily the following.

Theorem 13. Let S be any non-trivial point-transitive Steiner system. Ev-
ery cubic graph has a weak S-coloring where the singular vertices are exactly
the end-vertices of bridges.

Proof. After removing bridges from the graph 2-connected components and
isolated vertices remain. Let G1, G2, . . . , Gk be ordering of both isolated ver-
tices and 2-connected components such, thatGi connects toG[G1, G2, . . . , Gi−1]
by at most one bridge bi. (This can be always done, while the the block
graph is always a forest.) Denote G′′

i the graph Gi with all adjacent bridges
attached. Denote G′

i the graph obtained from Gi suppressing the 2-valent
vertices.

The graph G′
i does not contain bridges and hence has a S-coloring. Rein-

sert the 2-valent vertices and attach all the adjacent bridges. The three
newly created edges at some bridge end will posses the color of the subdi-
vided edge. We have thus obtained weak S-coloring of G′′

i in which only the
bridge ends are singular. Moreover since S is point-transitive, the coloring
can be choosen with any prescribed color of bi.
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We will succesively color G′′
1∪G′′

2∪· · ·∪G′′
i , for i = 1, 2, . . . , k. Clearly G′′

1

can be colored. The rest of the sequence can be accomplished by succesively
adding G′′

i to G′′
1 ∪G′′

2 ∪ · · · ∪ G′′
i−1. Since G′′

i and and G′′
1 ∪ G′′

2 ∪ · · · ∪ G′′
i−1

have only bi or even nothing in common, and the color of bi can be choosen,
the coloring of G′′

1 ∪G′′
2 ∪ · · · ∪G′′

i ∪G′′
i+1 is easily established.

This theorem can be improved a little: The vertices, at which three
bridges meet, can be made regular in the coloring too.

Note that both the projective and the affine Steiner systems (including the
trivial system and the Fano plane) are point-transitive. The authomorphisms
are affine transformations or collineations, respectively.

4 Affine colorings

Definition 14. Let G be a cubic graph. And end vertex v of a bridge is called
a bipartite end, if after removing the bridge and supressing v the component
containing v becomes bipartite.

Realize that after removing the bridge its bipartite end must lie in a block.
(That is, the bipartite end must lie in a leaf of the block graph of G.) This
is caused by the nonexistence of a cubic bipartite graph with bridges. Also
note that series-parallel ends are just a special case of bipartie ends and thus
a cubic graph with no bipartite end necessarily has no series-parallel end.

Proposition 15. In a cubic graph each bipartite end is a singular vertex of
any weak affine coloring.

Proof. Let G be cubic graph with the bipartite end v. For the purpose of
contradiction suppose that φ : E(G) → Z3×Z3× · · · ×Z3 is a weak coloring
of G by an affine Steiner triple system.

Let H be the block that contains the bipartite end v and let x and y
be the neighbours of v lying in H. We suppress the vertex v of degree two
and call H ′ the resulting bipartite graph with partite sets X, Y , x ∈ X,
y ∈ Y . The colors of the three edges e1, e2, e3 at any vertex of H satisfy
φ(e1) + φ(e2) + φ(e3) = (0, 0, . . . , 0), even in case of singular vertex. Using
this fact, a little algebra

(0, 0, . . . , 0) =
∑

e∈E(H)

(φ(e)− φ(e))

= φ(vy)− φ(vx) +
∑
x′∈X

z∈V (H−X)

φ(x′z)−
∑
y′∈Y

z∈V (H−Y )

φ(y′z)

= φ(vy)− φ(vx)
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shows that φ(vx) = φ(vy) and hence v is singular.

Hence the bipartite end is an obstruction to affine coloring, in fact the
only one. All other bridge ends can be made regular, it even suffices to use
only trivial Steiner system.

Proposition 16. Let G be cubic graph and let H be block of G with a single
cut-vertex v.

1. The vertex v is bipartite end.

2. Every cycle through v in H is odd.

Proof. The implication 1 ⇒ 2 clearly holds. For 2 ⇒ 1 to prove, it suffices
to show that every cycle in H not through v is even. For the purpose of
contradiction suppose there is an odd cycle C in H not through v. Since H
is 2-connected (and G is cubic) there exist two disjoint paths π1, π2 from v to
some two distinct vertices x and y of C. Divide the cycle C into two paths
ρ1, ρ2 between x and y. (See Figure 5.) Then both π1ρ1π2 and π1ρ2π2 are
cycles through v and have different parity. Therefore there is an even cycle
through v contradicting 2.

Clearly, if v is not a bipartite end, then in H there exists an even cycle
cycle through v.

Lemma 17. Let G be cubic graph which contains no bridge with bipartite
end. There exists a weak 3-edge-coloring, in which end vertices of the bridges
are regular.
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Proof. Decompose the graph into 2-connected components and isolated ver-
tices. Let G1, G2, . . . , Gk be all the 2-connected components or isolated ver-
tices ordered in such way, that Gi is attached to G[G1, G2, . . . , Gi−1] by at
most one bridge bi. Attach all adjacent bridges to Gi and denote the obtained
graph G′

i. We find a weak 3-edge-coloring of G′
i with the bridge ends regular.

If Gi is only an isolated vertex, we color the three edges (bridges) of G′
i

by three different colors. Otherwise, there are two cases to consider, (a) only
the bridge bi is attached to G′

i, (b) there are some other bridges.
(a) The end of the bridge bi is not a bipartite end. By Lemma 16, there

exists an even cycle passing thorugh the end of the bridge. We color the
edges of the cycle alternately 1 and 2, and all the other edges (including the
bridge bi) by 0.

(b) Denote u1v1, u1v2, . . . , umvm, m > 1 the bridges of G′
i, where vertices

u1, u2, . . . , um are of degree 1. (See Figure 6.) For each bridge end uj take
shortest path πj from uj to some other ul, l 6= j. Clearly, any other ur nor
vr does not lie on the path πj (r 6= j, r 6= l).

We start with all-zero coloring φ0 and construct a sequence of colorings
φ1, φ2, . . . , φm. If vj is a regular vertex in φj−1 we leave the coloring as was,
φj := φj−1. On the other hand, if vj is a weak vertex in φj−1 we recolor along
the path πj as follows: We construct an auxiliary coloring ψj that is all-zero
except on πj, where we label the edges 1, 2, 1, 2, . . . or 2, 1, 2, 1, . . . . Than
we set φj := φj−1 + ψj. The coloring ψj can be choosen in such way that it
will make both vj and vl regular in φj. (If vl is singular, both possibilities
for ψ are fine. But when vl is regular in φj−1, only of them will do good,
the other possibility makes vl a weak vertex.) Adding ψj to a weak φj−1

coloring results in correct weak coloring φj, because at any vertex w lying on
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πj (except the ends uj, ul) the sum of colors in Z3 of the three edges e1, e2, e3
adjacent to w still remains zero. Indeed,

φj(e1) + φj(e2) + φj(e3) = (φj−1(e1) + 1) + (φj−1(e2) + 2) + φj−1(e3)

= φj−1(e1) + φj−1(e2) + φj−1(e3) = 0.

It remains to combine the colorings of the individual G′
is. This is done

conceptualy in the same way as in Theorem 13. We leave colors of edges
of G′

1 untouched. If the colorings of G′
1 and G′

2 assign different colors to
the bridge b2, we can permute the colors of G′

2 to make them equal. In this
manner we succesively add all the G′

is i = 2, . . . , k.

Theorem 12 and Lemma 17 are building stones for our main result, that all
graphs without bipartite ends are colorable by AG(n, 3) = Z3×Z3×· · ·×Z3,
n ≥ 3.

Theorem 18. Every cubic graph without a bipartite end posseses an AG(n, 3)-
coloring, n ≥ 3.

Proof. Let G be cubic graph without a bipartite end. By Theorem 13, G
admits a weakAG(2, 3)-coloring φ such that only the bridge ends are singular.
By Lemma 17, G admits a weak T -coloring ψ such that bridge ends are
regular. The sets of singular vertices of φ and ψ are disjoint and hence by
Theorem 7 there exist a (non-weak) Steiner coloring by AG(2, 3) × T =
AG(3, 3). If n > 3, it suffices to use direct product with an all zero AG(n−
3, 3)-coloring.

We know that Snarks (including all the graphs with bridges) can not be
3-colored. We have completely characterized the class of AG(n, 3)-colorable
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Figure 8: Graph with a bridge colored by AG(2, 3) = Z3 × Z3.

cubic graphs, n ≥ 3. However it is still open which cubic graphs are AG(2, 3)-
colorable. We know, that there exist AG(2, 3)-colorable cubic graphs with
bridges, for example on Figure 8. We suspect, that the classes of AG(2, 3)-
and AG(3, 3)-cororable cubic graphs are equal, but we do not know how to
prove it.

5 Fano colorings

In this section we will study the colorings by the Fano plane. Fano color-
ings are best handled together with the whole class of colorings by projec-
tive Steiner systems, which in turn are essentialy nowhere-zero group-valued
flows.

We will denote
−→
E the set of darts of a graph. This set contains two darts

corresponding to each edge of the graph, one in each direction. If e is a
dart, we will denote e−1 the dart in the opposite direction. The set of darts
incident with a vertex v (both leaving or entering v) will be denoted E(v).

Definition 19 (Flow). Let G = (E, V ) be a multigraph and A a finite

Abelian group (with additive notation). Then a function f :
−→
E → A satisfy-

ing

• f(e−1) = −f(e) for each dart e ∈
−→
E

• and
∑

e∈E(v) f(e) = 0 for each vertex v ∈ V (Kirchhoff’s law),

is called A-flow on G. Moreover, if f(e) 6= 0 for each dart, the flow is called
a nowhere-zero.

12



If each element of the group is its own inverse, that is a=−a, then f(e) =
f(e−1) and the orientation of egdes loses its sense. Thus the flow can be
treated as the coloring of the edges only. This is also the case of group
(Z2 × Z2 × · · · × Z2,+). Due to Kichhoff’s law, a projective Steiner coloring
is in fact a nowhere-zero Z2 × Z2 × · · · × Z2-flow, and we will make no
distinction between these two. We utilize the known results about flows, of
which the theorem of Tutte and the 6-flow theorem of Seymour are of utmost
importance. The proofs can be found, for example, in the textbook [1].

Theorem 20 (Tutte). Let G be a graph and A, B, |A| ≤ |B| two Abelian
groups. If G has a nowhere zero A-flow, then it has also a nowhere zero
B-flow.

That means that the existence of a nowhere zero flow depens solely on
the order of the group and does not depend on its structure. Thefore we just
say that G has k-flow, if G admits an A-flow for some Abelian group of order
k.

Theorem 21 (Seymour). Any bridgeless graph possesses a nowhere zero
6-flow.

These two results imediately imply the following.

Theorem 22. Every bridgeless cubic graph is colorable by any nontrivial
projective Steiner system.

In particular, every bridgeless cubic graph has a coloring by the Fano
plane. However when graph has bridges, only a weak Steiner colorings by
the Fano plane can be guaranteed.

Weak coloring by the Fano plane in which only the bridge ends are singu-
lar can be obtained from the Lemma 17. Except the case of bipartite ends,
bridge ends can be made regular in weak 3-edge-coloring, and hence also in
a weak Fano-coloring. However, since the Fano plane is not an affine system,
we can manage the bipartite end to be regular in a weak Fano coloring too.

Lemma 23. Let G be a simple cubic graph and let H be block of G with a
single cut-vertex v with the bridge (a half-edge) attached. If v is a bipartite
end, then H has a weak coloring by Fano plane in which v is regular, with
any choosen triple of colors in any choosen order at v.

Proof. Fano plane is 2-point-transitive. (That means that for any four points
x, y, z, w of the Fano plane there is an authomorphism of the Fano plane
mapping x to y and z to w.) This is clear from that the Fano plane can be
seen as a projective plane. Thus if we find any weak coloring satisfying the
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Figure 9: K3,3 with a subdivided edge weakly colored by the Fano plane.

theorem, we can apply suitable automorphism to the coloring and obtain any
desired triple of colors at v in any order.

We proceed by induction on the number vertices of H. Denote by x, y
the neighbours of v in H. Denote by H ′ the graph obtained from H by
removing the bridge and suppressing v and denote h the xy-edge created by
the suppresion of v.

The graph H with the least number of vertices is K3,3 with a subivided
edge and bridge attached. Its weak coloring is depicted on Figure 9. This
forms the basis of the induction.

The graph H ′ is a bipartite cubic graph with partite sets, say, X and
Y , x ∈ X, y ∈ Y . H ′ has three edge-disjoint 1-factors F1, F2, F3, h ∈ F1.
Color the edges of F1, F2, F3 respectively by the colors (0, 1, 1), (0, 0, 1) and
(0, 1, 0). This coloring forms a nowhere-zero 4-flow in H ′. We first transform
this to ’not-yet-a-coloring’ of H: Color the bridge at v by (0, 1, 1), the edge
vx by (1, 0, 1), the edge vy by (1, 1, 0) and all other edges by the same color
as in H ′. Note that v and all other vertices except x and y are regular in
this ’not-already-a-coloring’. The vertices x and y are neither regular nor
singular. Later we will send some flow value along some paths to correct this
anomaly.

F2 ∪ F3 forms an even 2-factor of H ′ i.e. a set of even cycles covering
all vertices. Direct all edges of F1 from X to Y and contract cycles of the
2-factor. We obtain an Eulerian directed graph D. Call U the unoriented
version of this graph. Clearly, U is 2-edge connected and has cuts of even
size only. Every path in U (or D) corresponds to a path in H ′ between
F2 ∪ F3-cycles; in this path correspondence, we will use only those F1 edges
that connect two distinct F2 ∪ F3-cycles and freely use all F2- and F3-edges.
(See Figure 10.) This correspendence of paths in U and H ′ will be used
repeatedly. We consider a number of cases:

(a) U has a single vertex only. Then H ′ is Hamiltionian, with F2 ∪
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Figure 10: Graph H (the edges inside the F2 ∪ F3-cycles are not shown)
and corresponding graphs D and U . A path shown thick in H and the
corresponding path in U .
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Figure 11: Hamiltonian cycle C in H ′. Dotted are two important edges vpvq

and vrvs.

F3 forming a Hamilton cycle. Label the vertices along the Hamilton cycle
v1, v2, . . . , vk, . . . , vn, where x = v1 and y = vk, 1 < k ≤ n. Consider the
set of vertices A = {v2, v3, . . . , vk−1}. Clearly |A ∩X| = |A ∩ Y |. There are
two types of F1-edges incident with the vertices in A: edges of the form vivj,
1 < i, j < k, vi ∈ X, vj ∈ Y and edges of the form vivj, 1 < i < k < j. Since
each vertex in A is incident with exactly one F1-edge and H ′ is bipartite
there is the same number of edges of the second form incident with A ∩ X
and with A ∩ Y . Hence there is an even number of the edges of the form
vivj, 1 < i < k < j.

(a1) Assume that there exists at least two such edges vpvq and vrvs in F1,
1 < p, r < k < q, s. Then C1 = v1, v2, . . . , vp, vq, vq+1, . . . , vn, v1 and C2 =
v1, v2, . . . , vr, vs, vs+1, . . . , vn, v1 form two cycles through x and not through
y. (See Figure 11.) Divide C into two yx-paths π, ρ, where π starts with
a F2-edge and ρ with an F3-edge. Send the value (1, 1, 1) along π and send
the value (1, 0, 0) along ρ. The vertex y becomes singular. As next, send
along C1 the value (0, 0, 1) and along C2 the value (0, 1, 0). As a result the
vertex x becomes singular too. It is easy to see, that no edge receives the
color (0, 0, 0). Thus we have obtained a valid weak coloring as claimed. (The
assumption for this case holds also for the induction basis (i.e. H ′ = K3,3)
and the colorings obtained there and here are exactly the same.)

(a2) If there is no such edge vivj (1 < i < k < j), then take longer
of two the xy-paths of the Hamilton cycle. Without loss of generality let
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π = v1, v2, . . . , vk−1, vk be such. Since G is simple, π has length at least 7.
Send the value (1, 1, 0) along the edge xv2 and (1, 0, 1) along the edge yvk−1.
The vertices x, y become regular. The colors of the edges xv2, yvk−1 will be
distinct – (1, 0, 0) and (1, 1, 1). Remove the edges xv2 and yvk−1 and take the
component in which v2 and vk−1 lie. Add a new vertex v′ and a three new
edges v2v

′, v′vk−1 and a bridge (a half-edge) at v′. We have thus formed a
smaller block B with bipartite end v′. By induction hypothesis this block is
weak Fano-colorable such that v′v2 receive the same color as xv2 and v′vk−1

receive the same color as yvk−1. By removing v′ from B and pasting B it to
its original place in H we obtain a weak Fano-coloring.

(b) U has at least 2 vertices and has a 2-cut separating x and y. In H ′

the edges h, e also form a 2-cut. Clearly, h is one of edges of the cut, denote
e = uw the other one. Denote A,B the separated sets of H ′; x, u ∈ A, y, w ∈
B. There exist a yu-paths π in H ′, e ∈ π, h 6∈ π. Send along π the value
(1, 0, 1). Cutting the 2-cut and using the same cut-and-paste construction as
in case (a2), we get the desired coloring.

(c) U has at least 2 vertices and x and y have been contracted to a single
vertex in U . Pick another vertex u.

(c1) If there is 2-cut in U separating u and x, y, then send along xw-path
the value (1, 1, 0) and the value (1, 0, 1) along yz-path, where w, z are the
end vertices of the 2-cut on same side of the cut as u. Then use the same
cut-and-paste construction as in case (a2).

(c2) Otherwise there are four edge-disjoint xu-paths (= yu-path) in U .
From the pingeon hole principle, among these four paths there must be two
paths π, ρ, of which the last edges have the same orientation in D (i.e. both
edges are directed either to or out of u.) It means that the corresponding
paths in H ′ end at some common cycle C of F2 ∪ F3 and the last vertices
u1, u2 ∈ C of π, ρ lie in the same partite set. Take the corresponding path
π′ and ρ′ in H ′, π′ a xu1-path and ρ′ a yu1-path. The vertices u1, u2 lie on
common cycle of F2 ∪ F3, and are in the same partite set of H ′. Send along
π′ the value (1, 1, 0) and along ρ′ the value (1, 0, 1). The vertices x, y become
regular. Divide C into two paths u1u2-path and send along the path the
values (1, 0, 0) and (1, 1, 1) suitably such that u1, u2 become singular.

(d) U has at least 2 vertices, x and y have not been contracted to a single
vertex in U , and there is no 2-cut separating x and y. Then there is a directed
xy-path π in D not using the edge h. Let π′ be the corresponding yu−path
in H ′, where u is on the same F2 ∪ F3-cycle as x. Send along π′ the value
(1, 0, 1). Then divide the F2 ∪ F3 cycle into two xu-paths and continue as in
case (c2).

In all cases no edge receives the color (0, 0, 0), hence statement of the
Lemma is established.
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In the paper [2] is proved, that every cubic graph without series-parallel
end is colorable by a Steiner system of order 381. Our main result of this
paper improves this – we show that every such graph is colorable by a Steiner
system of order 21.

Theorem 24. Every cubic graph with no series-parallel end (in particular
every simple cubic graph) is T × F-colorable.

Proof. If the graph has parallel edges reduce them, a self-loop can not arise.
Decompose the graph into 2-edge-connected components (i.e. blocks or

isolated vertices) and attach all ajdacent bridges to the each component.
We construct weak 3-edge-coloring and weak Fano-coloring of each of these
components. Since both the trivial Steiner system and Fano plane are point-
transitive these colorings can be combined to a single weak T × F -coloring
of the whole graph. It remains to manage any vertex to be regular in either
3-coloring or Fano-coloring.

Let H be any 2-edge-connected component of G with bridges attached.
We consider a few cases:

(a) If H has no bridges, then it has strong Fano-coloring and all-singular
3-edge-coloring.

(b) If H has at least two bridges or H has only one bridge and the bridge
end is not a bipartite one, then H has a weak Fano-coloring in which only
bridge ends are singular and a weak 3-edge-coloring in which the bridge ends
are regular.

(c) If H has only one bridge and the bridge end is a bipartite one, then
it has a weak Fano-coloring in which the bridge end is regular. Since after
removing the bridge and suppressing the 2-valent vertex the component be-
comes bipartite, hence H has 3-edge-colororing in which only the bridge end
is singular.

In any of the three cases all the vertices of G are regular in at least one
of the two colorings: Fano-coloring or 3-edge-coloring.

6 A note on Berge-Fulkerson conjecture

In paper [4] is the Berge-Fulkerson conjecture given:

Conjecture 25 (Berge-Fulkerson). Every bridgeless cubic graph has six
perfect matchings, such that each edge of the graph lies in exactly two of the
matchings.

This conjecture gives arise to an unusual combinatorial representation of
the projective Steiner triple system PG(3, 2): Let us have six element set
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Figure 12: The projective Steiner system PG(3, 2). Not all points and triples
are shown.

M = {a, b, c, d, e, f}. (An element of M represents one of the six perfect
matchings.) There are

(
6
2

)
= 15 of 2-element subsets of M , these 15 subsets

will form the point set of PG(3, 2). The triples will be of two types, either
{{x, y}, {y, z}, {x, y}} or {{u, v}, {w, x}, {y, z}}, where u, v, w, x, y, z are dis-
tinct elements ofM . There are 20 triples of the first type and 15 of the second
type. We give the isomorphism with standard Z2×Z2×Z2×Z2−{(0, 0, 0, 0)}
representation of PG(3, 2) explicitly:

{a, b} 7→ (1, 1, 0, 0), {b, c} 7→ (0, 1, 1, 0), {c, e} 7→ (0, 0, 1, 0),

{a, c} 7→ (1, 0, 1, 0), {b, d} 7→ (0, 1, 0, 1), {c, f} 7→ (1, 1, 0, 1),

{a, d} 7→ (1, 0, 0, 1), {b, e} 7→ (0, 1, 0, 0), {d, e} 7→ (0, 0, 0, 1),

{a, e} 7→ (1, 0, 0, 0), {b, f} 7→ (1, 0, 1, 1), {d, f} 7→ (1, 1, 1, 0),

{a, f} 7→ (0, 1, 1, 1), {c, d} 7→ (0, 0, 1, 1), {e, f} 7→ (1, 1, 1, 1).

Theorem 22 assures us, that every bridgeless cubic graph can be colored
by PG(3, 2). However the point here is to find a PG(3, 2)-coloring using only
the triples of the second type. A Steiner coloring by PG(3, 2) using only the
triples of the second type corresponds to the six perfect matchings from the
conjecture and vice versa.

The first result of this kind is given in the paper [4] saying, that only six of
the seven triples of the Fano plane suffice in a Fano-coloring of a bridgeless
cubic graph. In addition, a connection to another conjecture of Fan and
Raspaud is given there.
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7 Conclusion

In the paper [2] is given the definition of the Steiner chromatic number. For
given cubic graph G the Steiner chromatic number is the least number n
such there exists a Steiner triple system of order n which colors the graph G.

Steiner chromatic number of graphs with a series-parallel end is infinite.
Every bridgeless cubic graph has Steiner chromatic number either 3 or 7
depending on whether it is 3-edge-colorable or not. We have shown that
every cubic graph with no series-parallel end has Steiner chromatic number
at most 21.

The graphs with a biparite end have Steiner chromatic number more than
9, i.e. at least 13. There exist only two unisomorphic Steiner systems of order
13. Using a computer we have successfully colored some cubic graphs with a
bipartite end by both of these Steiner systems. For example, we have colored
two copies of K3,3 with a subdivided edge and linked with a bridge. This
supports the conjecture given in the paper [3].

Conjecture 26. If G is a simple cubic graph and S a non-projective Steiner
triple system, then G fails to have an S-coloring only if S is affine and G
has a bridge with bipartite end.

That means, we conjecture that both the Steiner systems of order 13
color every cubic graph with no series-parallel end. However the structure of
both of these Steiner systems lack the algebraic beauty of affine or projective
systems making understanding of colorings by these systems much worse.
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